EXCHANGEABILITY OF SILK GLAND ELONGATION FACTOR 1b AND PIG LIVER ELONGATION FACTOR 1β IN POLYPEPTIDE CHAIN ELONGATION

Shin-ichiro EJIRI, Yozo NAOKI, Kazuyuki MURAKAMI and Teizo KATSUMATA

Department of Agricultural Chemistry, Iwate University, Morioka 020, Japan

Received 8 September 1978

1. Introduction

Three polypeptide chain elongation factors, i.e., EF-Tu, EF-Ts and EF-G, have been purified and their properties studied extensively in prokaryotes. While in eukaryotes only two factors, i.e., EF-1 and EF-2, had been known until EF-1 was resolved into two complementary factors, EF-1a(APase I) and EF-1b (APase II), in the silk gland [1,2]. The latter which corresponds to the smallest subunit (mol. wt 26 000) of EF-1 was found to stimulate 3 reactions:

- (i) EF-1a- and EF-2-dependent polyphenylalanine synthesis (polymerization reaction);
- (ii) EF-1a-dependent binding of [14C]Phe-tRNA to ribosome (binding reaction);
- (iii) Exchange of GDP bound to EF-1a with exogeneous GTP (exchange reaction).

From these results it was concluded that the EF-1b factor corresponds to the EF-Ts [2]. Similar factors were also prepared from pig liver [3], Artemia salina [4] and rabbit reticulocyte [5]. However, except for the pig liver EF-1 β characterization of their proteins and functions is obscure. Recently pig liver EF-1 β (mol. wt 30 000) has been purified to apparent homogeneity and shown to stimulate the three reactions [6]. From these results it seems most likely that the EF-1 β factor corresponds to EF-1b.

This paper describes the complete exchangeability of the silk gland EF-1b and the pig liver EF-1 β in the polymerization, binding and guanine nucleotide exchange reactions. Similarity of the amino acid compositions of EF-1b, EF-1 β and EF-Ts is also noted.

2. Materials and methods

2.1. Silk gland EF-1a and EF-1b

Homogeneously purified EF-1a and EF-1b were prepared as in [2].

2.2. Pig liver EF-1 α and EF-1 β

EF-1 α was prepared as in [7]. EF-1 $\beta\gamma$ (mol. wt 90 000) which consists of two subunits, EF-1 β (mol. wt 30 000) and EF-1 γ (mol. wt 55 000), was prepared as in [8]. It was resolved into each subunit by chromatography on a DEAE-cellulose (DE-32) in the presence of 6 M urea as described for the preparation of the silk gland EF-1b [2].

2.3. Assay for polymerization reaction

Poly(U)-dependent polyphenylalanine synthesis in the presence of heterogeneous combinations of EF-1a or EF-1 α , EF-1b or EF-1 β , and pig liver EF-2, was carried out as in [1].

2.4. Assay for binding reaction

Poly(U)-dependent binding of [14 C]Phe-tRNA to ribosome in the presence of EF-1a or EF-1 α , and EF-1b or EF-1 β , was carried out as in [1].

2.5. Assay for exchange reaction

Stimulation of the exchange of [3 H]GDP bound to EF-1a or EF-1 α with exogeneous GTP by EF-1 β or EF-1b was assayed as in [2]. The reaction mixture contained, in total vol. 0.1 ml, 50 mM Tris—HCl, pH 7.6, 10 mM MgCl₂, 70 mM KCl, 2 mM 2-mercapto-

ethanol, 20% glycerin (v/v), 50 μ g bovine serum albumin, 38–60 pmol [³H]GDP, and EF-1a or EF-1 α , was incubated for 3 min at 37°C. Then various amounts of EF-1b or EF-1 β and 10 nmol GTP were added to the mixture and reacted for 60 s at 0°C. The mixture was spotted on a membrane filter (TM-2, 0.45 μ m, Toyo) and washed with three 0.5-ml portions of cold buffer (0.05 M Tris—HCl, (pH 7.6), 50 mM KCl, 10 mM MgCl₂, 15% glycerin (v/v) and 2 mM 2-mercaptoethanol). The radioactivity retained on the filter was measured in a liquid scintillation spectrometer.

2.6. Amino acid analysis of EF-1b

The purified EF-1b was hydrolyzed in constantly-boiling 6 N HCl in an evacuated and sealed tube for 22 h at 105°C. The hydrolysate was evaporated to dryness under a reduced pressure at 40°C and analyzed with a Hitachi Model KLA-3B amino acid analyzer.

3. Results and discussion

In [2] we have shown the resolution of EF-1_H into three subunits, i.e., EF-1a (α subunit, mol. wt 51 000), EF-1b (γ subunit, mol. wt 26 000) and EF-1c (β subunit, mol. wt 46 000) by chromatographies on a DEAE-cellulose (DE 32) and CMcellulose (CM 32) in the presence of 6 M urea. It was also shown that the action of EF-1b corresponds to EF-Ts. Pig liver EF-1 $\beta\gamma$ [8] was also resolved into each subunit by the same methods used for the preparation of the silk gland EF-1b. EF-1y was not absorbed on the DEAE-cellulose column, while EF-1 β was absorbed and eluted at ~0.2 M KCl. Each subunit was dialyzed against a buffer solution which did not contain urea, and assayed for EF-1b activities. Since only EF-1 β (mol. wt 30 000) had some activity, it was used in the polymerization, binding, and exchange reactions to know the mutual exchangeability with EF-1b.

To compare the activities of EF-1b and EF-1 β in the polymerization reaction, we used them in the protein ratio 5:6 based on mol. wt 26 000 and 30 000, respectively. As shown in fig.1, EF-1b and EF-1 β were completely exchangeable in the stimulation of EF-1a- or EF-1 α -, and EF-2-dependent polyphenylalanine synthesis. That is, in spite of heterogeneous combinations of EF-1a and EF-1 β , or EF-1 α and

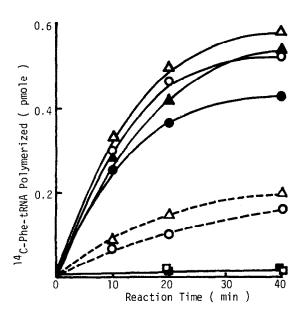


Fig. 1. Effect of EF-1b or EF-1 β on the EF-1a- or EF-1 α -, and EF-2-dependent polyphenylalanine synthesis. Reaction was carried out using 0.45 μ g EF-1a and EF-1 α , 0.05 μ g EF-1b, 0.06 μ g EF-1 β , 3.5 μ g EF-2, in the following combinations. EF-1a, EF-1b and EF-2($-\bullet$ -); EF-1a, EF-1 β and EF-2($-\bullet$ -); EF-1 α , EF-1b and EF-2($-\bullet$ -); EF-1 α and EF-2($-\bullet$ -); EF-1a and EF-2($-\bullet$ -); EF-1b and EF-2($-\bullet$ -); EF-1b and EF-2($-\bullet$ -).

EF-1b, they showed nearly the same activities as those of homologous combinations. As there were no activities with the combination of EF-1b and EF-2, of EF-1 β and EF-2, EF-1b and EF-1β preparations were not contaminated with EF-1a or EF-1 α , respectively. Figure 2 shows that EF-1b stimulated markedly EF-1α-dependent binding of [14C] Phe-tRNA to ribosome. The extent of stimulation was nearly the same as that of homologous combination EF-1a and EF-1b. EF-1β stimulated similarly EF-1a-dependent binding reaction. In the absence of EF-1a or EF-1 α , EF-1b or EF-1β had no activity on the binding reaction. Figure 3 shows the amount of [3H]GDP bound to EF-1a was markedly reduced by the addition of increasing amounts of EF-1b or EF-1\beta. While in the absence of EF-1\beta [3H]GDP bound to EF-1a was not displaced with unlabelled GTP at 0°C during a 30 s incubation period. Figure 4 shows the effect of EF-1b or EF-1 β on the exchange of [³H]GDP bound to EF-1 α with exogeneous GTP. Essentially the same

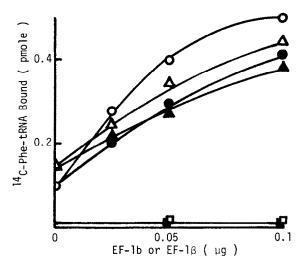


Fig.2. Effect of EF-1b or EF-1 β on the EF-1a- or EF-1 α -dependent binding of [14 C]Phe-tRNA to ribosome. The binding reaction was carried out at 25°C for 30 min in the presence of: 1.3 μ g EF-1a and EF-1b($-\bullet$ -); EF-1a and EF-1 β ($-\circ$ -); EF-1 α and EF-1 β ($-\circ$ -); EF-1 α and EF-1 β ($-\circ$ -); EF-1 α -); EF-1 β ($-\circ$ -).

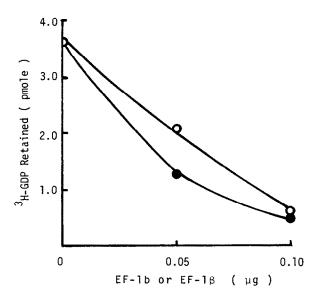


Fig. 3. Effect of EF-1b or EF-1 β on the exchange of [³H]-GDP bound to EF-1a with exogeneous GTP. The exchange reaction was carried out as in section 2 in the presence of 1.4 μ g EF-1a and various amounts of EF-1b($-\infty$), or 1.4 μ g EF-1a and various amounts of EF-1 β ($-\infty$).

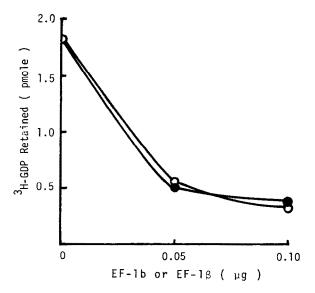


Fig.4. Effect of EF-1b or EF-1 β on the exchange of [³H]-GDP bound to EF-1 α with exogeneous GTP. The exchange reaction was carried out as in section 2 in the presence of 1.2 μ g EF-1 α and various amounts of EF-1b(- \circ -), or 1.2 μ g EF-1 α and various amounts of EF-1 β (- \circ -).

results as those in fig.3 were obtained in this experiment. The specific activities of EF-1b and EF-1 β were nearly equal.

As shown above the silk gland EF-1b was completely replaced by the pig liver EF-1 β . These results clearly show that EF-1b and EF-1 β are the same factors and correspond to EF-Ts. Although it has been established that EF-1 or EF-2 from various eukaryotes is exchangeable with each other, this is the first case of a demonstration of the exchangeability of EF-1 which had resolved into complementary factors. Thus it is of interest to compare the amino acid compositions of EF-1b and EF-1\beta. Table 1 shows the amino acid compositions of EF-1b. When these data were compared with those of EF-1 β in [6], a close similarity was found between them. An overall similarity was found also between EF-1b and EF-Ts [9]. The ratios of acidic to basic amino acids of EF-1b, EF-1 β , and EF-Ts were 2.3, 2.2, and 1.9, respectively. The isoelectric points of EF-1b and EF-1 β were both \sim 5. These data and chromatographic properties of these factors show that the three factors are acidic proteins with similar characters. A similar

Table 1
Amino acid compositions of purified EF-1b

Residue	mol%
Lysine	8.8
Histidine	0.6
Arginine	3.3
Aspartic acid	13.5
Threonine	4.8
Serine	6.2
Glutamic acid	15.4
Proline	5.3
Glycine	6.1
Alanine	9.9
Half-cystine	trace
Valine	7.4
Methionine	1.1
Isoleucine	4.1
Leucine	8.3
Tyrosine	3.1
Phenylalanine	2.3

factor which corresponds to EF-1b has been also obtained from pine pollen EF-1_H (to be published elsewhere). From the above results it should be stressed that the mechanisms of polypeptide elongation are universal throughout all organisms. Since *Artemia salina* [10] and wheat germ [11] EF-1 contain three different subunits as we originally noted in the silk gland [12], the smallest subunits (mol. wt \approx 30 000) most likely correspond to EF-1b.

Acknowledgement

The authors are sincerely grateful to Professor K. Shimura for helpful suggestions during this work.

References

- [1] Ejiri, S., Taira, H. and Shimura, K. (1973) J. Biochem. 74, 195-197.
- [2] Ejiri, S., Murakami, K. and Katsumata, T. (1977) FEBS Lett. 82, 111-114.
- [3] Iwasaki, K., Mizumoto, K., Tanaka, M. and Kaziro, Y. (1973) J. Biochem, 74, 849-852.
- [4] Slobin, L. I. and Möller, W. (1977) Biochem. Biophys. Res. Commun. 74, 356—365.
- [5] Prather, N., Ravel, J. M., Hardesty, B. and Shive, W. (1974) Biochem. Biophys. Res. Commun. 57, 578-583.
- [6] Motoyoshi, K. and Iwasaki, K. (1977) J. Biochem. 82, 703-708.
- [7] Iwasaki, K., Nagata, S., Mizumoto, K. and Kaziro, K. (1974) J. Biol. Chem. 249, 5008-5010.
- [8] Iwasaki, K., Motoyoshi, K., Nagata, S. and Kaziro, Y. (1976) J. Biol. Chem. 251, 1843—1845.
- [9] Kaziro, Y., Inoue-Yokosawa, N. and Kawakita, M. (1972) J. Biochem. 72, 853 863.
- [10] Slobin, L. I. and Möller, W. (1976) Eur. J. Biochem. 69, 351–366.
- [11] Bollini, R., Soffientini, A. N., Bertani, A. and Lanzani, G. A. (1974) Biochemistry 13, 5421-5425.
- [12] Shimura, K., Ejiri, S. and Taira, H. (1973) 9th Int. Cong. Biochem. abstr. 191.